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Abstract: Parallel solution of 1-indexed recurrence
relations has received much attention, but no e�ort
has been made to design parallel algorithms for multi-
indexed recurrence relations. Multi-indexed relations
arise in JPEG-standard DPCM compression of images,
and thus merits attention. In this paper we design
and analyze a parallel algorithm for solving q-indexed
recurrence relations of arbitrary order and arbitrary
number of indices q. The approach is dimension shift-
ing, which involves reducing the number of indices to 1
while clustering the terms of the relation into vectors.
This is accomplished by means of special vector oper-
ators that we de�ne and study. Our parallel algorithm
for doing the dimension shifting and for solving the re-
sulting 1-indexed recurrence relation takes O(log2N)
time on meshes of partitionable buses or hypercubes,
where N is the data input-output size.

1 Introduction

The massive amounts of imagery data in many appli-
cations demand that images be compressed to reduce
their storage and transmission requirements. In cer-
tain applications, most notably medical imaging, the
compression has to be lossless. One of the well-known
lossless image compression techniques is di�erential
pulse-code modulation (DPCM), which was adopted
by the Joint Photographic Expert Group (JPEG) as
an international standard [7]. Since when an image
is retrieved, locally or remotely, it has to be decom-
pressed (decoded) online for display, decoding must be
as fast as possible. Therefore, fast parallel algorithms
for DPCM decoding merit attention.
DPCM decoding is essentially the computation of a

2-indexed scalar recurrence relation of low order; ev-
ery term in the recurrence relation is indexed with two
indices, the row and column positions of pixels. Sim-
ilarly, DPCM of 3D and 4D images, which is conceiv-
able in applications involving 3D visual modeling with
or without motion, leads to 3-indexed and 4-indexed
recurrence relations.
Much work has been done on parallel algorithms for

solving 1-indexed recurrence relations of arbitrary or-
der [1, 4, 5], due to their applicability in numerical com-
putations; the fastest parallel algorithms for solving
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those equations take logarithmic time, and are based
on parallel pre�x computation [6]. However, until re-
cently no work has been reported on multi-indexed
recurrence relations. Considering the importance of
DPCM coding/decoding of imagery, and the need for
fast decoding, parallel algorithms for solving multi-
indexed recurrence relations are needed.
In this paper we will develop a new approach, called

dimension shifting, to design a parallel algorithm for
solving multi-indexed recurrence relations of arbitrary
order and arbitrary number of indices. The algorithm
takes square-logarithmic times on hypercubes and mul-
tidimensional meshes of partionable busses.
The paper is organized as follows. The next sec-

tion presents multi-indexed scalar recurrence relations.
Sections 3 develops the dimesnion shifting technique
for 2-indexed recurrence relations. Section 4 develops
dimension shifting for multi-indexed recurrence rela-
tions of arbitrary order, where the number of indices
is greater than 2. Finally, the last section closes the
paper with conclusions and future directions.

2 Multi-indexed Recurrence
Relations and DPCM

The most widely used form of DPCM is presented �rst
as a 2-indexed recurrence relation of order 1. After-
wards, higher order and higher dimension DPCM are
presented as a multi-indexed recurrence relation.
DPCM assumes that the interpixel redundancies and

correlations can be modeled as a 2D Markov model of
some order [3]. For order 1, the model involves three
given parameter, a; b and c, as described next. Let
X(0 : n�1; 0 : n�1) be a matrix of pixels, representing
an image. The model assumes that every pixel X(i; j)
can be largely \predicted" from its three neighbors in
the north, west, and north-west as follows:

X(i; j) = aX(i; j�1)+bX(i�1; j)+cX(i�1; j�1)+E(i; j)
(1)

where E(i; j) is the prediction error, or residual. Note
that when i and j are outside their appropriate range,
the corresponding value for X(i; j) is assumed to be
zero.
DPCM coding computes E fromX and then codes it

into a bit stream using an entropy coder such as Hu�-
man coding, run-length encoding, or arithmetic cod-
ing, which are lossless [8]. DPCM decoding decodes



the bit stream back to the residuals E(i; j), and then
computes the pixel valuesX(i; j) according to equation
1. Clearly, equation 1 is a 2-indexed scalar recurrence
relation of order one.
The generalization of equation 1 comes from higher

order DPCM and from multidimensional imagery.
DPCM of order (t1; t2; :::; tq) and parameter array
a(0 : t1; 0 : t2; :::; 0 : tq), for q-dimensional imagery
data, involves a q-indexed recurrence relation of order
(t1; t2; :::; tq) in the form:

X(i1; :::; iq) =

t1X

r1=0

:::

tqX

rq=0

a(r1; :::; rq)X(i1�r1; :::; iq�rq)+

E(i1; :::; iq); (2)

where a(0; 0; :::; 0)
is equal to 0 so that X(i1; i2; :::; iq) does not depend
on itself. As before, any term is assumed to be zero if
its indices are out of their de�ned bounds.
In this paper we will develop a parallel algorithm

for solving equation 2 using the general dimension
shifting technique. For simplicity of presentation, we
start with developing dimension shifting for 2-indexed
relations �rst. The more general q-indexed relations
for arbitrary q will be treated afterwards.

3 Dimension Shifting of
2-Indexed Relations

One fundamental idea in dimension shifting is the use
of the shift operator S on column vectors. If V (0 : n�1)
is a column vector, then SV is another vectorW (0 : n�
1) derived from V by shifting it down one position: for
all i > 0,W (i) = V (i�1), andW (0) = 0. The operator
S can be applied repeatedly (say, r times) on a vector.
This is equivalent to composition of operators. Denote
by Sr the resulting operator. Clearly, SrV is a vector
derived from V by shifting the latter down r times,
that is, for all i = 0; 1; :::; n� 1, (SrV )(i) = V (i � r),
where a term is 0 when its index is out of bounds. Two
special cases of r are worth noting: r = 0 and r = n.
S0 is by convention the identity operator I, that is,
IV = V for any vector V . For convenience, we will
sometimes use 1 instead I. When r = n, observe that
SnV = 0, the zero vector of length n. Accordingly, we
simply denote the operator Sn by 0. Note that for all
r � n, Sr = 0. Polynomial operators in S, that is, any
linear combination of the powers of S, can be de�ned
as follows.

De�nition 1 Given a real sequence a0; a1; :::; an�1, a

polynomial operator T =
Pn�1

l=0 alS
l is de�ned to be

such that for any vector V , T V =
Pn�1

l=0 al(S
lV ). The

vector T (0 : n� 1), where T (i) = ai for all i, is called
the characteristic vector of operator T .

It is important to note that T V is some form of con-
volution of vectors T and V . We elaborate on this im-
portant observation before we proceed with converting
2-indexed relations to 1-indexed relations.
Recall that the convolution of two vectors U(0 :

n�1) and V (0 : n�1) is a vectorW (0 : 2n�1) where

W (i) =
Pi

r=0U(r)V (i�r), using again the convention
that when indices are out of their bounds, the corre-
sponding terms are zeros. Only the �rst n components
of W will be of use to us. Therefore, we denote by

 the partial convolution operation that returns the
�rst n components of the full convolution. For ease of
reference, we will de�ne partial convolution formally.

De�nition 2 Let U(0 : n� 1) and V (0 : n� 1) be two
vectors. The partial convolution of U and V , denoted
U
V , is a vector W (0 : n � 1) of the same length as

U and V such that W (i) =
Pi

r=0 U(r)V (i � r), for
i = 0; 1; :::; n� 1.

Since full convolution is an associative operation,
partial convolution 
 is associative too.

Theorem 1 Let T =
Pn�1

r=0 arS
r be a polynomial op-

erator of characteristic vector T , where T (i) = ai, and
let V (0 : n� 1) be a vector. Then T V = T
V .

Proof: Let W = T V =
Pn�1

r=0 arS
rV , and

recall that (SrV )(i) = V (i � r). Therefore,

W (i) =
Pn�1

r=0 ar(S
rV )(i) =

Pn�1
r=0 arV (i � r) =Pn�1

r=0 T (r)V (i � r), for all i = 0; 1; :::; n � 1. It fol-
lows that W = T
V , and thus T V = T
V .
Now we are in position to carry out dimension shift-

ing on 2-index relations. Throughout this section, the
following notational convention will be followed. For
any matrix M(0 : n � 1; 0 : n � 1), denote by Mj the
j-th column of M , so that Mj(i) =M(i; j).
Recall that a general 2-indexed recurrence relation

of order (k; t) and parameter array a(0 : k; 0 : t) is

X(i; j) =
kX

l=0

tX

s=0

a(l; s)X(i� l; j � s) +E(i; j): (3)

Using the notation Mj(i) for M(i; j), equation 3
becomes

Xj(i) =

kX

l=0

tX

s=0

a(l; s)Xj�s(i� l) +Ej(i)

Since Xj�s(i � l) = (SlXj�s)(i), the above equation
transforms to

Xj(i) =
kX

l=0

tX

s=0

(a(l; s)SlXj�s)(i) +Ej(i); for all i:

Because the last equation involves the i-th compo-
nents of the various column vectors, the index i can
be dropped, yielding a condensed vector equation:

Xj =

tX

s=0

kX

l=0

(a(l; s)SlXj�s) +Ej ;

where the order of the double summation is reversed.
By splitting the summation over s into two parts, one
for s = 0 and the other for s 6= 0, and by recalling that
a(0; 0) = 0, we obtain

Xj = (

kX

l=1

a(l; 0)SlXj) +

tX

s=1

kX

l=0

a(l; s)SlXj�s +Ej :



Next, move the �rst sum on the right hand side to the
left, and factor Xj out, resulting in

(1�

kX

l=1

a(l; 0)Sl)Xj =

tX

s=1

(

kX

l=0

a(l; s)Sl)Xj�s +Ej :

(4)
To simplify the notation, let

T0 = 1�

kX

l=1

a(l; 0)Sl; Ts =

kX

l=0

a(l; s)Sl

so that equation 4 becomes T0Xj =
Pt

s=1 TsXj�s +
Ej ; leading to

Xj =
tX

s=1

T �1
0 TsXj�s + T �1

0 Ej : (5)

The main question now is whether the polynomial
operator T0 has indeed an inverse, and if so, compute
its inverse. As the next theorem will show, T �1

0 does
exist, and it is a polynomial operator whose coe�cients
will be the solution of a scalar recurrence relation of
order k.

Theorem 2 1) T �1
0 =

Pn�1
l=0 C(l)Sl, where the C(l)'s

satisfy the following 1-indexed scalar recurrence rela-
tion of order k:

C(0) = 1; C(r) =

kX

l=1

a(l; 0)C(r�l); for 1 � r � n�1:

(6)

2) For every s = 1; 2; : : : ; t, T �1
0 Ts =

Pk

l=0Bs(l)S
l;

where
Bs = C
a(0 : n� 1; s): (7)

Note that for m > k, a(m; s) = 0.

Proof: 1) The C(l)0s satisfy

(1�
Pk

l=1 a(l; 0)S
l)(
Pn�1

l=0 C(l)Sl) = 1.
In that identity relation, the coe�cient of S0 is C(0)
on the left side and 1 on the right side, leading to
C(0) = 1. For r = 1; 2; :::n � 1, the coe�cient

of Sr is C(r) �
Pmin(k;r)

l=1 a(l; 0)C(r � l) on the left
hand side, and 0 on the right hand side. Thus,

C(r) =
Pmin(k;r)

l=1 a(l; 0)C(r � l). By taking C(m) = 0
for m < 0, the value of C(r) simpli�es to C(r) =Pk

l=1 a(l; 0)C(r � l).
2) Thr proof of this part follows immediately from ob-
serving that operator polynomials multiply in the same
way as real polynomials, that polynomial multiplica-
tion is equivalent to convolution of the coe�cients, and
that Sr = 0 for all r � n.
Using Theorem 2, and recalling from Theorem 1

that applying a polynomial operator to a vector is a
convolution 
, equation 5 becomes

Xj =
Pt

s=1Bs
Xj�s + Fj (8.a)
Fj = C
Ej . (8.b)

Clearly, equation 8.a is a 1-indexed vector recurrence
relation of order t. This completes the dimension shift-
ing from index dimension to term dimension. It re-
mains to shift the order dimension to term dimension.

The standard method for solving 1-indexed recur-
rence relations of order t > 1 is to convert the equation
into a vector equation of order 1 such that every vector
has t terms, where each term has the same dimension-
ality as the terms of the original recurrence relation.
Speci�cally, equation 8.a will be converted to the fol-
lowing form

Xj = A�Xj�1 + F j (9)

where Xj is a column vector of t vectors

Xj = [Xtj�1 Xtj�2 Xtj�2 : : : Xtj�t]
T ; j = 1; 2; :::; n=t;

and A, F j and operation � are to be de�ned. Note

that in the de�nition of Xj , the exponent T stands for

matrix transpose. Note also that X0 is the zero vector
of length t� n.
The conversion from order t to order 1 is usually

straightforward, but because each term in equation 8.a
is a long vector and the operations involved, especially

, are fairly costly, the conversion becomes a time-
consuming task, and thus warrants special attention
to parallelize it. The conversion entails computing the
matrix A and the vectors F j 's, and de�ning the oper-
ation �.
The values of A and the F j 's are derived by repeated

application of equation (8.a) so that each Xtj�r , for
r = 0; 1; :::; t � 1, is expressed in terms of Xt(j�1)�1,
Xt(j�1)�2, ..., Xt(j�1)�t and Ftj�r , Ftj�r�1,...,Ftj�t.
We summarize next the outcome of that deriva-
tion/conversion process, leaving out the derivation de-
tails for the sake of brevity.

� The matrix A in equation 9 is a t � t matrix
where each term Ai;s is a vector of length n, for
i = 1; :::; t and s = 1; 2; :::; t. Speci�cally, Ai;s sat-
is�es the following equation

At;s = Bs; Ai�1;s = Bs
Ai;1 +Ai;s+1;

i = t; t� 1; :::; 2; s = 1; 2; :::; t (10)

where Bs was de�ned in equation 7.

� For every column vector Y = [Y1 Y2 : : : Yt]
T

where each Yi is a vector of length n,

A�Y = Z; where Z(i) =

tX

s=1

Ai;s
Ys: (11)

Note that A�Y is similar to a matrix-vector prod-
uct except that the scalar multiplication opera-
tion is replaced by the vector convolution oper-
ation 
. Note also that if � is performed on
a system consisting of t subsystems, where sub-
system i computes Z(i), then the time for � is
T� = t� T
 + (t� 1)� T+. In particular, if each
subsystem has n processors, then T
 = O(log n)
time by performing parallel convolution through
FFT, and T+ = O(1) because it is a parallel vec-
tor addition. Hence, T� = O(tT
) = O(t logn).

� Each column vectors F j in equation 9 is of the
form

F j = [Fj;1 Fj;2 : : : Fj;t]
T ; (12)



where the terms Fj;r are themselves vectors of
length n, satisfying the following equation

Fj;t = Ftj�t; andfor r = 1; 2; :::; t� 1;

Fj;r = Ftj�r+

tX

s=r+1

At+r+1�s;1
Ftj�s; j = 1; 2; :::; n=t:

(13)
Note that the Ftj�r 's are de�ned in equation 8.b.

4 Generalization to
Multi-indexed Relations

In this section we treat the most general case, namely,
q-indexed relations of arbitrary order, where q � 2.
The treatment will require a generalization of: (1) the
1D shift operator to (q � 1)-dimensional shift opera-
tors, (2) the subsequent generalization of the \single-
variable" polynomial operator to something that re-
sembles a multivariable polynomial operator, and (3)
�nally the use of (q�1)-dimensional convolution rather
than 1D convolution. The conversion process from q-
indexed arbitrary-order relations to 1-indexed relations
of order 1 is otherwise the same as in the previous sec-
tion.
Recall that a q-indexed recurrence relation of order

(t1; :::; tq) has the following form:

X(i1; :::; iq) =

t1X

r1=0

:::

tqX

rq=0

a(r1; :::; rq)X(i1�r1; :::; iq�rq)+

E(i1; :::; iq) (14)

where il = 0; 1; :::; Nl � 1 for l = 1; 2; :::; q, the array
E(0 : N1�1; 0 : N2�1; :::; 0 : Nq�1) and the array a(0 :
t1; 0 : t2; :::; 0 : tq) of parameters are given, a(0; 0; :::; 0)
is equal to 0 so that X(i1; i2; :::; iq) does not depend
on itself, and tl << Nl for l = 1; 2; :::; q. As before,
any term is assumed to be zero if its indices are out of
their de�ned bounds.
To simplify the multi-index cumbersome notation,

we will introduce some notations and conventions. Let

� R = f(r1; r2; :::; rq) j rl = 0; 1; :::tl for all l =
1; 2; :::; qg, and any R in R is a vector R =
(r1; r2; :::; rq).

� R0 = f(r1; r2; :::; rq�1) j rl = 0; 1; :::tl for all l =
1; 2; :::; q � 1g.

� R� = R� f(0; 0; :::; 0)g, that is, the set R except
of the zero-tuple.

� R0� = R0 � f(0; 0; :::; 0)g.

� I = f(i1; i2; :::; iq) j il = 0; 1; :::Nl � 1 for all l =
1; 2; :::; qg, and any I in I is by convention a vector
I = (i1; i2; :::; iq).

� I 0 = f(i1; i2; :::; iq�1) j il = 0; 1; :::Nl �
1 for all l = 1; 2; :::; q � 1g.

� Convention: If R = (r1; r2; :::; rq) is an index
vector in R, then R0 is vector derived from R

by dropping the last term of R. Clearly, R0 =
(r1; r2; :::; rq�1) 2 R0, and (R0; rq) = R. Similarly,
for any index vector I in I, denote by I0 the vector
derived from I by dropping the last term from the
latter.

� Convention: For any q-dimensional array M
and any integer iq, denote by Miq the (q � 1)-
dimensional array such that Miq (i1; i2; :::; iq�1) =
M(i1; i2; :::; iq�1; iq). Equivalently, Miq (I

0) =
M(I).

Accordingly, equation 14 becomes

X(I) =
X

R2R�

a(R)X(I � R) +E(I): (15)

Using the last two conventions indicated above, the
last equation translates to

Xiq (I
0) =
X

R2R�

a(R)Xiq�rq (I
0 � R0) +Eiq (I

0):

Split the multiple summation on the right hide side
of the previous equation into two parts: one for rq = 0
and another for rq 6= 0. This leads to

Xiq (I
0) =

X

R0
2R0�

a(R0; 0)Xiq (I
0 � R0)+

tqX

rq=1

X

R0
2R0

a(R0; rq)Xiq�rq (I
0 � R0) +Eiq (I

0): (16)

Now we introduce the generalization of the shift
operator. For each vector R0 = (r1; r2; :::; rq�1) of
non-negative components, de�ne the shift operator
SR0 to operate on (q � 1)-dimensional arrays V of
size N1 � N2 � � � � � Nq�1 as follows: SR0V is vec-
tor of the same dimensional structure as V such that
(SR0V )(I0) = V (I0 � R0) for all I0 2 I 0. Therefore,
Xiq (I

0 � R0) = (SR0Xiq )(I
0). Note that if rl � Nl for

some l, then SR0 is the zero operator, that is, SR0V is
the zero array of size N1 � N2 � � � � � Nq�1. Note
also that if R0 and S0 are two index vectors in R0,
then SR0SS0 = SR0+S0 . Indeed, we can correspond

to SR0 a polynomial term xr11 x
r2
2 :::x

rq�1
q�1 of q � 1 vari-

ables; the product (i.e., the composition) of two oper-
ators SR0SS0 is equivalent to the product of their cor-
responding polynomial terms. Hence, one can de�ne
\multivariable" polynomial operators.

De�nition 3 Given a (q � 1)-dimensional real array
T (I0), I0 2 I 0, the operator T =

P
I02I 0 T (I

0)SI0 , called

the multivariable polynomial operator of characteristic
array T , is such that for any array V of size N1�N2�
� � � �Nq�1, T V =

P
I02I 0 T (I

0)(SI0V ).

Equation 16 can now be put in the following form:

Xiq (I
0) = (

X

R0
2R0�

a(R0; 0)SR0Xiq )(I
0)+



tqX

rq=1

(
X

R0
2R0

a(R0; rq)SR0Xiq�rq )(I
0) +Eiq (I

0): (17)

Since the vector-index I0 is the same in all the terms
of the previous equation, we can drop it resulting in a
compact (q � 1)-dimensional array equation

Xiq =
X

R0
2R0�

a(R0; 0)SR0Xiq+

tqX

rq=1

X

R0
2R0

a(R0; rq)SR0Xiq�rq+Eiq :

(18)

Next, move the �rst summation on the right hand
side to the left, and factor Xiq out:

(1�
X

R0
2R0�

a(R0 ; 0)SR0 )Xiq =

tqX

rq=1

X

R0
2R0

a(R0; rq)SR0Xiq�rq+Eiq :

(19)

We simplify the notation by de�ning

T0 = 1�
X

R0
2R0�

a(R0; 0)SR0 ;

Trq =
X

R0
2R0

a(R0; rq)SR0 ; for rq = 1; 2; :::; tq:

As a result, equation 19 becomes T0Xiq =Ptq
rq=1 TrqXiq�rq +Eiq , leading to

Xiq =

tqX

rq=1

T
�1

0
TrqXiq�rq + T

�1

0
Eiq (20)

The next theorem combines and generalizes Theo-
rems 1 and 2 to multivariable polynomial operators.
We �rst de�ne partial multidimensional convolution.

De�nition 4 The partial convolution of two N1 �
N2 � � ��Nq�1 arrays U and V is an N1�N2 � � ��Nq�1

array W , denoted W = U
V , such that
W (i1; :::; iq�1) =

Pi1
r1=0

:::
Piq�1

rq�1=0
U(r1; :::; rq�1)V (i1 �

r1; :::; iq�1 � rq�1).

Theorem 3 1) Let T and V be two N1 �N2 � � � � �
Nq�1 arrays, and T the multivariable polynomial op-
erator of characteristic array T . Then, T V = T
V .
2) T �1

0 =
P

I02I 0 C(I
0)SI0 , where C is an N1 �N2 �

� � ��Nq�1 array that satis�es the following (q�1)-index
recurrence relation of order (t1; t2; :::; tq�1):

C(0; 0; :::; 0) = 1; C(I0) =
X

R0
2R0

a(R0; 0)C(I0 � R0)

(21)
3) For
every iq = 1; 2; :::; tq, T

�1
0 Tiq =

P
I02hIpBiq (I

0)SI0 ,
where

Biq = C
aiq ; (22)

and aiq is an N1 � � � � � Nq�1 array such that
aiq (i1; :::; iq�1) = a(i1; :::; iq�1; iq) if (i1; :::; iq�1) is in
R0, and equal to zero otherwise.

Proof: The proof of (1) is similar to the proof of The-
orem 1. The proof of (2) and (3) follows the same
reasoning as in the proof of Theorem 2.
Now, by using the previous theorem, we convert

equation 20 to a form identical to equations (8) (cor-
respond iq to j and rq to s):

Xiq =
Ptq

rq=1Brq
Xiq�rq + Fiq (23.a)

Fiq = C
Eiq . (23.b)
Clearly, equation (23.a) is a 1-indexed recurrence re-

lation of order tq , where every term is an N1 � N2 �
� � ��Nq�1 array. This completes the dimension shifting
from index dimension to term dimension. The shifting
of the order dimension to term dimension is the same
as in the previous section starting from equation 9
onward. The resulting 1-index recurrence relation of
order 1, similar to equation 9, is

Xiq = A�X iq�1 + F iq (24)

The de�nitions of A, Xiq , F iq , Fiq ;rq , and � are for-
mally the same as in the previous section, with the
proper substitutions. Note in particular that A is a
tq � tq matrix where every term Ai;s is an N1 �N2 �
� � ��Nq�1 array, and the convolution 
 involved in the
de�nition of � is now a (q�1)-dimensional convolution
on N1�N2�� � ��Nq�1 arrays. The architecture, data
assigment and the parallel algorithm follow.
Architecture
The architecture is naturally an N1 � N2 � � � � � Nq

mesh of hypercubes or of partitionable buses. The
mesh can be viewed as Nq submeshes, each being an
N1�N2�� � ��Nq�1 mesh. The submeshes are labeled
0; 1; :::; Nq � 1. On the other hand, the whole mesh
can be viewed as partitioned into Nq=tq contiguous
subsystems of tq contiguous submeshes each. The sub-
systems are labeled 1; 2; :::; Nq=tq, and the submeshes
within each subsystem are labeled locally 1; 2; :::; tq.
Data Assignment

Assume that each subsystem has the parameter array
a such that the (sub)array arq is stored in the rq-th
submesh of each subsystem, one term per processor.
In addition to array a1, submesh 0 of the mesh has
the array a0. The arrays Eiq and Fiq are stored in
submesh iq, that is, E(i1; i2; :::; iq) and F (i1; i2; :::; iq)
are in processor (i1; i2; :::; iq). Each local submesh rq
of each subsystem iq hosts arrays Brq , Ai;rq for all
i = 1; 2; :::; tq, and Fiq ;rq .

Algorithm General(input: E; a; output: X)
begin

1. Submesh 0 calls the algorithm \General" re-
cursively to compute C(0 : N1; :::; 0 : Nq�1)
by solving the (q � 1)-indexed scalar recur-
rence relation 21 of order (t1; t2; :::; tq�1).
Afterwards, C is broadcast along dimension
q to all the submeshes.

2. for iq=0 to Nq � 1 pardo /* Compute F */
3. Submesh iq does: Fiq = C
Eiq by a par-

allel convolution algorithm;
endfor

4. for rq = 1 to tq pardo
5. Local submesh rq of each subsystem does:

Brq = C
arq ; Atq ;rq = Brq ;



endfor
6. for i = tq down to 2 do /* Compute A */
7. Local submesh 1 of each subsystem broad-

casts Ai;1 along dimension q to all the sub-
meshes of its subsystem;

8. Each submesh rq = 2; 3; :::; tq in each sub-
system sends the vector array Ai;rq one
step down along dimension q in the mesh;
/* Steps 7 and 8 deliver data to processors
to compute A next. */

9. for rq = 1 to tq pardo
10. Local submesh rq of each subsystem

does: Ai�1;rq = Brq
Ai;1 +Ai;rq+1;
endfor

endfor

11. for iq=1 to Nq=tq pardo /* Compute F */
12. for r=1 to tq pardo
13. Local submesh r of subsystem iq does:

it gets Ftqiq�rq from local submesh rq
of subsystem iq, for rq = r; r+1; :::; tq;
it then computes Fiq;r = Ftqiq�r +Ptq

rq=r+1Atq+r+1�rq;1
Ftq iq�rq ;
endfor

endfor
14. All the subsystems of the mesh work to-

gether to solve the 1-indexed recurrence rela-
tion Xiq = A�Xiq�1+F iq in parallel, where

Xiq resides in subsystem iq ;
end

Analysis

Let T (N1; t1; N2; t2; :::; Nq ; tq) be the parallel time
complexity of the whole algorithm, and let N =
N1N2:::Nq . Step 1, being a recursive step, takes
T (N1; t1; N2; t2; :::; Nq�1; tq�1) time. The time of all
the remaining steps is dominated by the last step,
step 14, which is the solution of the 1-indexed recur-
rence relation of order 1, equation 24, and thus takes

O((T� + T+) log
Nq

tq
) time. Note that � is a matrix-

vector product where the matrix is tq�tq and the mul-
tiplication operation is replaced by (q�1)-dimensional

. Multidimensional convolution can be implemented
by multidimensional FFT, performed one dimension
after another, in O(logN1+logN2+ � � �+logNq�1) =
O(log(N1N2:::Nq�1)) time because FFT in dimension
l takes O(logNl) time. Since T� = O(tqT
), it fol-
lows that T� = O(tq log(N1n2:::Nq�1)). Since also
T+ = O(1), it follows that step 14 takes

O(tq log(N1N2:::Nq�1) log(Nq=tq)).
Consequently, we have

T (N1; t1; :::; Nq; tq) = T (N1; t1; :::; Nq�1; tq�1)+
O(tq log(N1:::Nq�1) log(Nq=tq)):

This recurrence relation easily yields that
T (N1; t1; :::; Nq; tq) = T (N1; t1)+

O(
Pq

l=2 tl log(N1:::Nl�1) log(Nl=tl))

Clearly, T (N1; t1) = O(t1 log
N1

t1
) because it corre-

sponds to solving a scalar 1-indexed recurrence re-
lation of order t1. Since log(N1:::Nl�1) log(Nl=tl) �

logN log(Nl=tl) � logN logNl � log2N , the time for-
mula for the whole algorithm simpli�es to

T (N1; t1; N2; t2; :::; Nq ; tq) = O((

qX

l=1

tl) log
2N):

Since the sequential time of solving equation 14 is
O(t1:::tqN), it follows that

the speedup is O(
t1t2:::tqP

q

l=1
tl

N
log2N

), and the e�ciency is

O(
t1t2:::tq

(
P

q

l=1
tl) log2 N

), where N is the size of the output

array X . In the typical cases where the tl's are small
constants, the overall time becomes O(log2N), and the

speedup and e�ciency become O(N= log2N) and

O(1= log2N), respectively.

5 Conclusions

In this paper we developed a dimension-shifting ap-
proach for novel parallel solution of multi-indexed
recurrence relations of arbitrary order in square-
logarithmic time, using a mesh of hypercubes or of par-
titionable buses. Multi-indexed recurrence relations
have not been addressed before, but hold special sig-
ni�cance due to their application to DPCM, which is
a standard image compression technique.
For future work, it is of practical interest to con-

sider how best to load-balance and possibly pipeline
the algorithm \General" on a system of fewer proces-
sors than the size of the output X , for the purpose of
minimizing the parallel time complexity.
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